Halla el dominio de estas funciones:

a)
$$y = \frac{x^2 + 2}{1 - x^2}$$
 b) $y = \sqrt{x^2 - x - 12}$

a)
$$Dom f = \mathbb{R} - \{x \in \mathbb{R}/1 - x^2 = 0\} = \mathbb{R} - \{-1, 1\}$$

b)
$$Dom f = \mathbb{R} - \{x \in \mathbb{R}/x^2 - x - 12 \ge 0\} = (-\infty, -3] \cup [4, +\infty)$$

a) La función $y = ax^2 + bx - 5$ pasa por los puntos (-3,1) y (2, 11). Hallar el eje de simetría

$$y = ax^{2} + bx - 5 \rightarrow (-3,1) \quad y \quad (2,11)$$

$$a(-3)^{2} + b(-3) - 5 = 1 \quad | \quad a(2)^{2} + b(2) - 5 = 11$$

$$9a - 3b = 6 \quad | \quad 4a + 2b = 16$$

$$9a - 3b = 6 \quad | \quad 4a + 2b = 12$$

$$4a + 2b = 16$$

$$4a + 2b = 16$$

$$18a - 6b = 12 \quad | \quad b = 4$$

$$12a + 6b = 48$$

$$b = 4$$

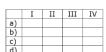
$$b = 4$$

$$eje \ simetria : \ x = -1$$

b) Hallar la TVM de la función $y = \frac{x^3}{3} + \frac{4x^2}{3} - 5x - 6$ en el intervalo $\begin{bmatrix} -7, -4 \end{bmatrix}$

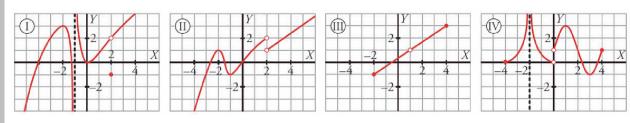
$$y = \frac{x^3}{3} + \frac{4x^2}{3} - 5x - 6 \rightarrow TVM \left[-7, -4 \right] = \frac{f(-4) - f(-7)}{-4 - (-7)} = \frac{14 - (-20)}{3} = \frac{34}{3}$$
$$f(-7) = \frac{(-7)^3}{3} + \frac{4(-7)^2}{3} - 5(-7) - 6 = -\frac{343}{3} + \frac{196}{3} + 29 = -20$$
$$f(-4) = \frac{(-4)^3}{3} + \frac{4(-4)^2}{3} - 5(-4) - 6 = -\frac{64}{3} + \frac{64}{3} + 20 - 6 = 14$$

Resolver las siguientes ecuaciones exponenciales


a)
$$0, 4^{x-1} = 6, 25^{6x-5}$$

 $\left(\frac{2}{5}\right)^{x-1} = \left(\frac{5^2}{2^2}\right)^{6x-5}$
 $\left(\frac{5}{2}\right)^{-x+1} = \left(\frac{5}{2}\right)^{12x-10}$
 $-x+1=12x-10$
 $-13x = -11 \rightarrow x = \frac{11}{13}$
b) $10^{x+1} - 10^{x-2} = 999$
 $10 \cdot 10^x - \frac{10^x}{100} = 999$
 $10^x \left(10 - \frac{1}{100}\right) = 999$
 $10^x \left(\frac{999}{100}\right) = 999$

Resolver las siguientes ecuaciones logarítmicas


a)
$$\log_{\frac{1}{2}} \left(-\frac{1}{x} \right) = 2$$
 b) $0.2 \log_{x} \frac{1}{32} = -0.5$ $\left(\frac{1}{2} \right)^{2} = -\frac{1}{x}$ $\log_{x} \left(\frac{1}{32} \right)^{0.2} = -\frac{1}{2} \rightarrow \log_{x} \sqrt[5]{\frac{1}{2^{5}}} = -\frac{1}{2}$ $\log_{x} \frac{1}{4} = -\frac{1}{x}$ $\log_{x} \frac{1}{2} = -\frac{1}{2} \rightarrow x^{-\frac{1}{2}} = \frac{1}{2}$ $\frac{1}{\sqrt{x}} = \frac{1}{2} \rightarrow \sqrt{x} = 2 \rightarrow x = 4$

Las cuatro gráficas siguientes corresponden a funciones discontinuas. Para cada una explica:

- a) Cuáles son los puntos de discontinuidad. justifica la razón de la discontinuidad
- b) Cuál es su dominio de definición.
- c) Indica si tiene máximos y mínimos relativos y di cuáles son.
- d) En qué intervalos es creciente y en cuáles es decreciente.

Nota: contesta esta pregunta en forma de tabla como en la figura

Solución:

	I	II	III	IV
Discontinuidad	x = -1 (no evitable) De salto infinito x = 2 (evitable)	x = 2 (no evitable) De salto finito	x = 1 (evitable)	x = -2 (no evitable) De salto infinito x = 0 (no evitable) De salto finito
Dominio	$\mathbb{R}-\{-1\}$	$\mathbb{R}-\{2\}$	$[-2,1) \cup (1,4]$	$[-4,-2) \cup (-2,0) \cup (0,4]$
Maximos	(-2,3) (relativo)	(-2,1) (relativo)	No tiene	(1,3) (relativo)
Mínimos	(0,0) (relativo)	(-1,-1) (relativo)	No tiene	(3,-1) (absoluto)
Creciente	$(-\infty, -2) \cup (0,2) \cup (2, +\infty)$	$(-\infty,-2)\cup(-1,2)\cup(2,+\infty)$	$(-2,1) \cup (1,4)$	$(-4,-2)\cup(0,1)\cup(3,4)$
Decreciente	$(-2,-1) \cup (-1,0)$	(-2,-1)	No decrece	$(-2,0) \cup (1,3)$

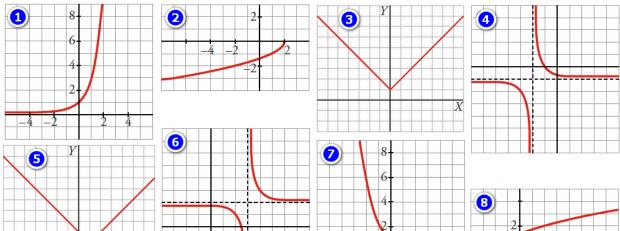
Asocia a cada gráfica una de estas fórmulas:

b)
$$y = |x - 1|$$

c)
$$y = -\sqrt{2-x}$$

d)
$$y = 3^x$$

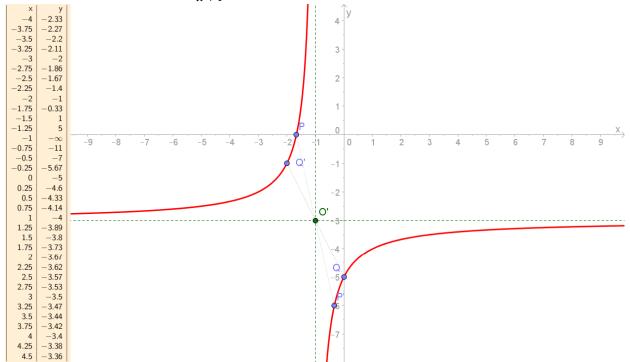
$$e) y = \sqrt{x-2}$$


f)
$$y = 4^{-x}$$

g)
$$y = 2 + \frac{1}{x - 3}$$

h)
$$y = 1 + |x|$$

c)
$$y = -\sqrt{2-x}$$
 d) $y = 3^{x}$
h) $y = 1+|x|$ i) $y = \sqrt{x+2}$


$$j) y = -1 + \frac{1}{x+2}$$

Solución:

1	2	3	4	5	6	7	8
$y = 3^x$	$y = -\sqrt{2 - x}$	y = 1 + x	$y = -1 + \frac{1}{x+2}$	y = x - 1	$y = 2 + \frac{1}{x - 3}$	$y = 0.4^x$	$y = \sqrt{x+2}$
exponencial	irracional	De valor absoluto	racional	De valor absoluto	racional	exponencial	irracional

7 Estudiar la función: $f(x) = \frac{-3x-5}{x+1}$

$$f(x) = \frac{k}{x+m} + n$$

$$k = -2$$

$$m = 1$$

$$n = -3$$

Función Homográfica

$$f(x) = -\frac{2}{x+1} - 3 = \frac{-3 \ x - 5}{x+1}$$

Simetría: centro HIPÉRBOLA → O'=(-1, -3)

✓ Puntos simétricos

Discontinuidad

AV
$$\rightarrow$$
 x = -1

Creciente por intervalos

$$P = \left(\frac{-5}{3}, 0\right)$$

Corte con eje Y

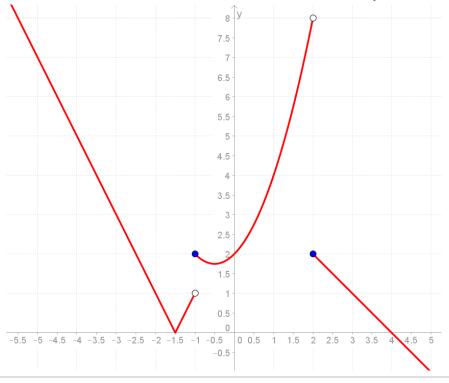


Tabla de Valores

Representa gráficamente la función f y construye una tabla de al menos 3 valores por tramo:

$$f(x) = \begin{cases} |2x+3| & si \quad x < -1 \\ x^2 + x + 2 & si \quad -1 \le x < 2 \\ -x + 4 & si \quad x \ge 2 \end{cases}$$

X	у	y2	у3
-3,0	3,0		
-2,5	2,0		
-2,0	1,0		
-1,5	0		
-1,0	1,0	2,0	
-0,5		1,75	
0		2,0	
0,5		2,75	
1,0		4,0	
1,5		5,75	
2,0		8,0	2,0
2,5			1,5
3,0			1,0
3,5			0,5
4,0			0
4,5			-0,5